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Abstract
Objective. As we move through an environment, we are constantly making assessments,
judgments and decisions about the things we encounter. Some are acted upon immediately, but
many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world.
In this paper, we use physiological correlates of this labeling to construct a hybrid
brain–computer interface (hBCI) system for efficient navigation of a 3D environment.
Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from
subjects as they move through a small part of a 3D virtual city under free-viewing conditions.
Using machine learning, we integrate the neural and ocular signals evoked by the objects they
encounter to infer which ones are of subjective interest to them. These inferred labels are
propagated through a large computer vision graph of objects in the city, using semi-supervised
learning to identify other, unseen objects that are visually similar to the labeled ones. Finally,
the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies.
Main results. We show that by exploiting the subjects’ implicit labeling to find objects of
interest instead of exploring naively, the median search precision is increased from 25% to
97%, and the median subject need only travel 40% of the distance to see 84% of the objects of
interest. We also find that the neural and ocular signals contribute in a complementary fashion
to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show
that neural and ocular signals reflecting subjective assessment of objects in a 3D environment
can be used to inform a graph-based learning model of that environment, resulting in an hBCI
system that improves navigation and information delivery specific to the user’s interests.
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1. Introduction

Most brain–computer interface (BCI) research endeavors to
help disabled users navigate and interact with the world
(Wolpaw et al 2002). For paralyzed users, BCIs have been
used to drive wheelchairs (Galan et al 2008, Leeb et al 2007),

operate robotic arms (Hochberg et al 2006), and navigate
assistive robots (Perrin et al 2010); for ‘locked-in’ patients,
BCIs can be used to type messages (Sellers and Donchin
2006). The goal of these BCIs is to restore, at least in part,
some function of the human body that has been lost, and this
goal limits the user base to a small group possessing certain

1741-2560/14/046003+12$33.00 1 © 2014 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/1741-2560/11/4/046003
mailto:psajda@columbia.edu
http://stacks.iop.org/JNE/11/046003/mmedia


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
03 JUN 2014 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2014 to 00-00-2014  

4. TITLE AND SUBTITLE 
Neurally and ocularly informed graph-based models for searching 3D 
environments 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Columbia University,Department of Computer Science,116th Street and
Broadway,New York,NY,10027 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Objective. As we move through an environment, we are constantly making assessments judgments and
decisions about the things we encounter. Some are acted upon immediately, but many more become mental
notes or fleeting impressions?our implicit ?labeling? of the world. In this paper, we use physiological
correlates of this labeling to construct a hybrid brain?computer interface (hBCI) system for efficient
navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and
pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing
conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they
encounter to infer which ones are of subjective interest to them. These inferred labels are propagated
through a large computer vision graph of objects in the city, using semi-supervised learning to identify
other, unseen objects that are visually similar to the labeled ones. Finally the system plots an efficient route
to help the subjects visit the ?similar? objects it identifies. Main results. We show that by exploiting the
subjects? implicit labeling to find objects of interest instead of exploring naively, the median search
precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to
see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a
complementary fashion to the classifiers? inference of subjects? implicit labeling. Significance. In
summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D
environment can be used to inform a graph-based learning model of that environment, resulting in an
hBCI system that improves navigation and information delivery specific to the user?s interests. 

15. SUBJECT TERMS 



16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

12 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



J. Neural Eng. 11 (2014) 046003 D C Jangraw et al

disabilities. Although BCIs for healthy users have long been
the subject of speculation and science fiction, traditional BCI
inputs like motor imagery and the P300 remain slower, less
reliable substitutes for physical input methods like the mouse
and keyboard (Zander et al 2010).

The prospect of BCIs for able-bodied users offers
an opportunity to vastly expand the BCI audience and
expose the field to the benefits of increased scale (including
monetary resources, rigorous testing and the support of a
large community of users), so interest in this objective has
grown in recent years (Pfurtscheller et al 2010, Wang et al
2009b, Allison 2010, Lance et al 2012). One approach is
a shift from explicit inputs, which the user must generate
for the purpose of operating the BCI, to naturally evoked
ones, produced without the intent of computer control. These
can be brain signals, like theta power (Grimes et al 2008),
or other physiological signals, like galvanic skin response
(Allanson and Fairclough 2004). Naturally evoked signals
offer the distinct advantage of requiring little to no user effort
or remapping of thought to action (Zander et al 2010), but BCIs
using these signals are limited in the scope of applications they
can address since the signals must be produced instinctively
or even subconsciously. To achieve the best of both worlds,
some ‘hybrid BCI’ (hBCI) systems have begun to fuse
multiple modalities that use naturally evoked signals like heart
rate or pupil accommodation speed in concert with explicit
control signals like motor imagery or SSVEP (Lee et al
2010, Pfurtscheller et al 2010). These systems use multiple
modalities of input to create multi-dimensional control signals
or correct for errors.

Even so, healthy users have physical input alternatives
available, and are therefore unlikely to tolerate the number of
incorrect classifications produced by even the most accurate
hBCI. But the study of realistic stimuli and scenarios, an
important step towards ‘mobile’ BCIs for healthy users
(Bayliss and Ballard 2000, Healy and Smeaton 2011, Brouwer
et al 2013), has introduced an opportunity to use environmental
context to further improve BCI results. If the user is searching
for a consistent type of object, a graph-based semi-supervised
computer vision (CV) system can use measures of visual
similarity to reject false positives and find other, unseen
objects that might also be of interest (Wang et al 2009b,
Pohlmeyer et al 2011). In this way, CV’s broad awareness
of environmental context can be used to classify a multitude
of objects based on hBCI output, but without requiring the user
to view all of them.

The emerging research area of fixation-related potentials
(FRPs), initially used in the context of reading (Dimigen et al
2011, Hutzler et al 2007), has revealed visual search as a strong
opportunity for an intuitive, context-conscious hBCI. Recent
studies have shown that fixations on a target stimulus initiate
EEG responses similar to the P300 elicited by a flashed target
stimulus (Dandekar et al 2012a, Kamienkowski et al 2012).
Several studies have successfully classified fixations as being
on a target or distractor stimulus (Brouwer et al 2013, Healy
and Smeaton 2011, Luo and Sajda 2009). In similar visual
search paradigms, studies have shown that subjects tend to
fixate longer on targets than on distractors, and this tendency

has been exploited for computer control (Jacob 1991). Pupil
size, which has long been known to correlate with interest
and mental effort (Hess and Polt 1960, 1964, Kahneman and
Beatty 1966), also changes with memory load during visual
search (Porter et al 2007). Thus, the single act of visual
search naturally evokes both neural and ocular signals that are
distinct for targets and distractors. But whether these signals
remain informative in a naturalistic, dynamic scenario—and
whether they are productive to include in a classifier together,
or are merely redundant indicators of the same internal state—
remains unclear. Our study investigates whether each modality
can provide information that is independent from the others
to an hBCI, and whether CV can be used to further improve
classification when visual search is conducted in a realistic
environment.

The system we present in this paper employs a user’s
naturally evoked EEG, eye position and pupil dilation to
construct a hybrid classifier capable of distinguishing objects
of interest from distractors as the user moves past objects in a
three-dimensional (3D) virtual environment. We show that the
hybrid classifier is more accurate than one trained using any
one of the three modalities alone. The system also uses a CV
graph to reject anomalies in the hybrid classifier’s predictions
and find other, visually similar objects in the environment,
including new objects that the user has not yet visited. We
show that using CV increases the precision and size of the
predicted target set well beyond that of the hybrid classifier.
Finally, the system plots an efficient route to assist the user
in visiting the targets it predicts. Our study provides insight
into how naturally evoked neural and ocular signals can be
simultaneously exploited and integrated with environmental
data to enable augmented search and navigation in an hBCI
application.

2. Methods

2.1. System overview

The system is designed to plot an efficient route to search for
objects of interest (or ‘targets’) in a large mapped environment.
The environment contains many objects, and limited data about
each object is available—in this case, visual features extracted
from the object and its position in the environment, but no text
tags or human labeling.

A system block diagram is shown in figure 1. The
user explores a small fraction of the environment looking
for targets, and her EEG, eye position and pupil size are
tracked as she explores. Artifacts are removed from the data,
and potentially discriminatory features are extracted. Using a
2-stage classifier, these features are used to produce a set of
hBCI predicted targets. A CV system then tunes this set to
reject false positives and extrapolates it to find other visually
similar objects in the environment. The most visually similar
objects are labeled as CV predicted targets, and the system
plots an efficient route to visit them. By traversing this route,
the user should see more targets per unit of distance traveled
than if she explored the environment without the system.

This study implements and tests a proof-of-concept
version of this system in a 3D virtual environment. Subjects
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Figure 1. Modular framework for the proposed system. Each box
represents a stage of processing described in detail in subsections
2.3–2.10 of the text. The stage’s general function appears in black at
the top of the box. The method(s) used to serve that function in the
current study appear below it in gray. Arrows between the boxes
represent the EEG (blue), pupil (green), gaze (red) and multimodal
(orange) inputs/outputs passed between the stages. ICA =
independent component analysis, LDA = linear discriminant
analysis, PD = pupil dilation, DT = dwell time, hBCI = hybrid
brain–computer interface, TAG = transductive annotation by graph,
CV = computer vision, TSP = traveling salesman problem.

are navigated through a grid of streets and asked to count
objects of a target category while also performing a secondary
driving-related task. The signals naturally evoked by this task,
along with the CV features of our virtual stimuli, are used
as input to our system, which identifies an efficient route to
find predicted targets in unexplored parts of the environment.
The next subsection outlines our virtual environment, and
the following subsections correspond to the sequential stages
shown in figure 1.

2.2. Virtual environment

The system was tested in a 3D virtual environment, making
it possible to present a realistic yet consistent background
to subjects while randomizing the stimuli. The environment
was constructed using Unity 3D game development software
(Unity Technologies, CA). It consisted of a grid of streets with
two alleys on each block, one on either side. The subject’s
viewpoint was automatically navigated down the streets as if

Figure 2. Screenshot of the virtual city as viewed by the subject.
The subject was instructed to (1) count the number of billboards
(right) that belonged to a certain target category, and (2) press a
button whenever the leading car (center) illuminated its brake lights
and slowed down. A video of the subject’s view is presented in
supplementary movie 1 (available from
stacks.iop.org/JNE/11/046003/mmedia).

riding in a car. The environment was displayed to the subject
on a 30′′ Apple Cinema HD display with a 60 Hz refresh rate,
and subtended approximately 30 × 23 visual degrees.

In each pair of alleys, a square ‘billboard’ object was
placed so that the object gradually became visible as the
subject passed it (see figure 2 and supplementary movie 1)
(available from stacks.iop.org/JNE/11/046003/mmedia). The
image on the billboard was selected from a subset of images
from the CalTech101 database (Fei-Fei et al 2007). The subset
consisted of 50 images in each of four categories: car sides,
grand pianos, laptops and schooners. These categories were
chosen because they were photos (not drawings) and were well
represented by the CV system (see simulations in Pohlmeyer
et al (2011), supplementary information). The identity of the
image, and the side of the subject’s viewpoint on which it
appeared, was randomized (with replacement). Subjects were
asked to count objects of one category (targets) and ignore the
others (distractors) but make no physical response. They were
allowed to move their eyes freely during the task. The subjects
saw 20 objects per block, and each block lasted approximately
100 s. At the end of each block, they were asked to verbally
report the number of target objects they had seen. 13–15 blocks
were recorded so that each subject observed 260–300 objects,
about 25% of which were targets. Each object was in view
for approximately 1160 ms. Although the luminance of the
stimuli was not standardized, the target category was randomly
assigned for each subject.

To keep the subjects engaged and make the driving
simulation more realistic, subjects were also asked to press
a button when a car in front of them illuminated its brake
lights and slowed to half its normal speed. When the button
was pressed, this ‘leading car’ would speed back up to return
to its default distance in front of the subject. The time
between braking events was randomly selected with a uniform
distribution between 5 and 10 s. This secondary task also
served to default the subjects’ gaze to the center of the screen.
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2.3. Data collection

Ten healthy volunteer subjects were recruited for this study
(ages 19–42, 3 female, 1 left-handed). All reported normal or
corrected-to-normal vision. Informed consent was obtained in
writing from all participants in accordance with the guidelines
and approval of the Columbia University Institutional Review
Board. Each subject was provided with a set of written task
instructions and was shown a small subset of the stimuli before
the first block. If the subject failed to press the button in
response to the leading car braking (which took place in the
first block of two subjects), that block was aborted and removed
from analysis.

EEG data were amplified with a gain of 1000 and collected
at 1000 Hz from 77 Ag/AgCl electrodes (selected from a 10–10
montage) using a Sensorium DBPA-1 Amplifier (Sensorium
Inc., VT). Recordings were referenced to the left mastoid with
a forehead ground. All electrode impedances were less than
50 k�, while the amplifier has an input impedance of 100 G�.
The amplifier applied high-pass and low-pass analog filters
with cutoffs at 0.01 and 500 Hz, respectively.

An EyeLink 1000 eye tracker (SR Research, Ontario,
Canada) was used to collect eye position and pupil area data
from one eye at 1000 Hz. The tracker was a ‘tower mount’
with chin and forehead rests to stabilize the subject’s head.
A 9-point validation was performed before each block, and
if the validation was unsatisfactory the eye tracker was re-
calibrated. Just before each screen update, Unity’s record of
the bounding box surrounding any object on the screen was
sent to the EyeLink computer for recording via a dedicated
TCP/IP connection. The recording setup is described further
in Jangraw and Sajda (2011).

To synchronize the data, a parallel port pulse was sent
from the eye tracker computer to the EEG amplifier every
2 s. The time at which the parallel port pulses were sent and
received were used to synchronize the eye tracker and EEG
data. The discrepancy between the two systems’ records of the
time between pulses was never more than 2 ms.

2.4. Pre-processing and feature extraction

Saccades and fixations were detected using the EyeLink online
parser. Eye position and pupillometry data were analyzed using
MATLAB (The MathWorks Inc., MA). Some blocks were
found to have a large, constant eye position drift, and so a post-
hoc drift correction was performed. The median eye position
from each block was calculated, and the eye position for that
block was shifted so that the median fell on the center of the
screen (see supplementary figure S1).

Using the frame-by-frame record of each object’s
bounding box and the drift-corrected record of eye position,
the first fixation on each object (when the fixation start position
fell within 100 pixels, or 3.0◦, of the object’s bounding box)
was identified. The first fixation away from the object (when
the fixation start position fell more than 100 pixels outside the
bounding box) was also determined. The ‘dwell time’ for each
object was defined as the time between these two fixations.
If the subject did not fixate on an object, that object was

removed from further analysis (on average, 4.7% of objects
were removed).

The subject’s pupil area during each blink was estimated
using linear interpolation. Each subject’s pupil area data were
then divided by the mean across that subject’s blocks and
multiplied by 100, so that the units could be interpreted as
a percentage of the mean. The pupil area data were epoched
from 1000 ms before to 3000 ms after the first fixation on each
object. A baseline of −1000 to 0 ms was subtracted from each
epoch to calculate the pupil dilation evoked by each object.

EEG data were analyzed using the EEGLAB toolbox
(Delorme and Makeig 2004). The signals were band-pass
filtered from 0.5 to 100 Hz, notch filtered at 60 Hz, and
down-sampled to 250 Hz. All blocks were concatenated, and
excessively noisy channels were removed by visual inspection
(on average, 3.5 channels per subject were removed). To define
a fixation onset well synchronized with EEG, we computed
an average ERP locked to the first fixations on all objects,
identified the peak time of the saccadic spike (a negative peak
in posterior regions), and defined this point as time zero. This
is similar to the method of Brouwer et al (2013), but we used
a single timing correction for each subject rather than trial-by-
trial realignment.

Components related to blink and horizontal
electrooculographic (HEOG) artifacts were determined
using the maximum power and maximum difference methods
described in Parra et al (2005), but artifact-contaminated data
from the task was used instead of a dedicated ‘calibration
paradigm’ in which the subject is instructed to produce
artifacts by blinking or moving his eyes. In our analysis, the
blink component was the component with maximum power in
periods marked by the eye tracker as blinks, and the HEOG
component was the component that was maximally different
when the subject happened to fixate on the far left side of the
screen and the far right side of the screen. These components
were projected out of the EEG data using the ‘interference
subtraction’ method described by Parra et al (2005), in which
the activity of each noise source is estimated from the data,
projected back into sensor space, and then subtracted from
the signal.

Epochs were extracted from the first 1000 ms of data after
the first fixation on the object, and a post-saccadic baseline of 0
to 100 ms was subtracted as in Hutzler et al (2007). A voltage
threshold of 75 μV was applied as in Kamienkowski et al
(2012): if fewer than five electrodes exceeded the threshold at
any point in the epoch, those electrodes were interpolated from
all remaining electrodes using the inverse distance between
electrodes as weights. If more than five electrodes exceeded
the threshold, the epoch was discarded (on average, 1.5% of
trials were discarded). The 0–100 ms baseline was subtracted
again after interpolation.

To reduce the dimensionality of the feature space
and avoid rank deficiency issues, principal component
analysis (PCA) was performed on each subject’s epoched
EEG, and only the top 20 PCs were retained. Temporal
independent component analysis (ICA), which identifies
components whose temporal patterns of activity are
statistically independent from one another, was then performed
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on the data using the Infomax ICA algorithm (Bell and
Sejnowski 1995, Makeig et al 1996). The resulting IC activities
were used as features in the classifier (see supplementary figure
S2 for components from one subject).

2.5. Within-bin classification

A hierarchical classifier was adapted from the hierarchical
discriminant component analysis (HDCA) described in Gerson
et al (2006), Pohlmeyer et al (2011) and Sajda et al (2010)
to accommodate multiple modalities. To learn each subject’s
classifier, the EEG data from 100 to 1000 ms after the first
fixation on the object were separated into nine 100-ms bins. A
set of ‘within-bin’ weights across the ICs was determined for
each bin using Fisher linear discriminant analysis (FLDA):

w j = (�+ + �−)−1(μ+ − μ−) (1)

where w j is the vector of within-bin weights for bin j, μ and �

are the mean and covariance (across training trials) of the data
in the current bin, and + and − subscripts denote target and
distractor trials, respectively. The weights w can be applied to
the IC activations x from a separate set of evaluation trials to
get one ‘within-bin interest score’ z ji for each bin j in each
trial i:

z ji = wT
j x ji. (2)

The within-bin interest scores from the evaluation trials
will serve as part of the input to the cross-bin classifier. The
use of an evaluation set ensures that if the within-bin classifier
over-fits to the training data, this over-fitting will not bias the
cross-bin classifier towards favoring these features.

In order to maintain a consistent sign and scale for all
the inputs to the cross-bin classifier, we processed the pupil
dilation and dwell time data similarly to the EEG data. The
pupil dilation data from 0 to 3000 ms were separated into six
500-ms bins and averaged within each bin (the shortest time
between saccades to objects was 3272 ms). For each bin, this
average was passed through FLDA to create a discriminant
value whose ‘sign’ was the same as the EEG data’s (so that
targets > distractors). The dwell time data were also passed
through FLDA. The scale of each EEG, pupil dilation and
dwell time feature was then normalized by dividing by the
standard deviation of that feature across all evaluation trials. A
second-level feature vector zi was created for each evaluation
trial i by appending that trial’s rescaled EEG, pupil dilation
and dwell time features into a single column vector.

To examine the scalp topography of the EEG data
contributing to the discriminating components, we calculated
forward models for each EEG bin. For each bin j, we appended
the z ji values across trials into a column vector z j and the x ji

vectors into a matrix X j. This allowed us to calculate the
forward model a j as follows:

a j = X jz j

zT
j z j

. (3)

This forward model can be viewed as a scalp map and
interpreted as the coupling between the discriminating
component and the original EEG recording.

2.6. Cross-bin classification

To classify the second-level feature vectors from each trial (zi),
‘cross-bin’ weights v (across temporal bins and modalities)
were derived using logistic regression, which maximizes the
conditional log likelihood of the correct class:

v = arg min
v

(∑
i

log{1 + exp[−civT zi]} + λ||v||22
)

(4)

where ci is the class (+1 for targets and −1 for distractors)
of trial i and λ = 10 is a regularization parameter introduced
to discourage overfitting. These weights can be applied to the
within-bin interest scores from a separate set of testing trials
to get a single ‘cross-bin interest score’ yi for each trial:

yi = vT zi. (5)

The effectiveness of the classifier lies in its ability to
produce cross-bin interest scores yi that are higher for targets
than for distractors. The area under the receiver operating
characteristic (ROC) curve (AUC) was therefore used as a
figure of merit. Trials with cross-bin interest scores more than
1 standard deviation above the mean were identified as ‘hBCI
predicted targets’. For comparison purposes, single-modality
(EEG only, pupil dilation only and dwell time only) and dual-
modality (each pair of modalities) classifiers were developed.
These classifiers use the same process described above, but
they classify using only the within-bin scores of one or two
modalities.

The use of an evaluation set (which was not used in the
original HDCA) is essential in the hybrid case to avoid overly
weighting the EEG bins, since the first-level EEG classifiers
have a much higher dimensionality than the ocular features
and are thus more prone to overfitting (Duin 2002). Training,
evaluation and testing sets were generated using nested 10-
fold cross-validation. That is, for each of ten ‘outer folds’, one
tenth of the trials were left out and placed in the testing set.
Then, in each of ten ‘inner folds’, one tenth of the remaining
trials were left out and placed in the evaluation set, and the
rest were assigned to the training set. In generating the ten
sets to be left out in the ten different folds, trials were grouped
chronologically.

2.7. Label self-tuning

A CV system called transductive annotation by graph (TAG)
was used to tune the hBCI predicted target set for each subject
and extrapolate the results of our hybrid classifier to the rest
of the objects in the environment. The TAG constructed a ‘CV
graph’ containing all the images on billboard objects in the
environment, using their similarity to determine connection
strength (Wang et al 2008, 2009a). The graph employs
‘gist’ features (low-dimensional spectral representations of
the image based on spatial envelope properties, as described
in Oliva and Torralba (2001)). The similarity estimate for
each pair of objects is based not only on the features of that
pair, but also on the distribution of features across all objects
represented in the CV graph.

The TAG performed ‘label self-tuning’ on the hBCI
predicted target set by removing images that did not resemble
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the set as a whole and replacing them with images that did
(Sajda et al 2010, Wang et al 2009a, 2009b). Conceptually,
the image in the hBCI predicted target set least connected to
the others was deemed most likely to be a false positive. It
was removed from the set and replaced with the image not in
the set that was most connected to the set6. This process was
repeated one time for every image in the hBCI predicted target
set. Images in the resulting set were called ‘tuned predicted
targets’.

2.8. CV graph extrapolation

The tuned predicted target set was propagated through the
CV graph to determine a ‘CV score’ for each image in
the environment, such that the images with the strongest
connections to the tuned predicted target set were scored most
highly. A cutoff was determined by fitting a mixture of two
Gaussians to the distribution of CV scores (labels were not
used, but ideally one represented the distribution of targets
and the other that of distractors) and finding the intersection
point of the Gaussians that falls between their means. The
images with CV scores above the cutoff were identified as
‘CV predicted targets’. Because each image is paired with
a billboard object in virtual environment space, these CV
predicted targets represent our system’s predictions of the
places in the environment that are most likely to contain objects
that the subject would like to visit.

2.9. Route planning

A traveling salesman problem (TSP) solver using the 2-opt
method (Croes 1958) was modified to allow only routes on the
environment’s grid. This solver employed a distinct graph-
based model of the environment that contained the same
nodes as the CV graph (i.e., billboard objects) but different
edge strengths (based on physical proximity instead of visual
similarity). The TSP solver was used to produce an efficient
‘traveling salesman route’ (in the form of a text file list of
waypoints) that the user could take to visit all the CV predicted
targets in the virtual environment.

2.10. Final search

The list of waypoints can be fed back into the Unity
software and traversed to view the CV predicted targets
efficiently (see supplementary movie 2) (available from
stacks.iop.org/JNE/11/046003/mmedia). To provide insight
into the efficiency of search using the output of this system,
the distance traveled and number of targets seen by following
this route can be compared with a brute-force search (the route
the TSP solver would recommend to see all the objects in the
environment). More efficient searches will visit more targets
per unit of distance traveled.

6 In practice, images were added or removed from the predicted target set
in order to maximize an objective function. This function incorporates the
smoothness of the CV predicted label function across the graph and the fitting
of the CV predicted labels with the hBCI-derived labels (see Wang et al
(2009a) for more details).

3. Results

3.1. Feature averages

System testing afforded us an opportunity to observe
neural and ocular signals during free viewing of a realistic
environment. The subject’s gaze sometimes moved to the (task-
irrelevant) background of roads and buildings, not just the
stimuli we had placed in the environment. Peripheral vision
could be employed in the task as well. We expected to see a
P300, longer dwell times and larger pupil dilations for targets,
but the size and constancy of these trends in our dynamic,
free-viewing scenario were unknown.

Mean target and distractor FRPs across subjects are
plotted in figure 3(a). These FRPs are somewhat consistent
with those reported in other target detection tasks (Brouwer
et al 2013, Dandekar et al 2012a, Healy and Smeaton 2011,
Kamienkowski et al 2012), and a P3b-like separation between
target and distractor fixations is apparent on electrode Pz
(Polich 2007).

The mean subject-median target and distractor
timecourses of pupil dilation (median across trials, mean
across subjects) are plotted in figure 3(b). The pupil contraction
preceding fixation onset is likely related to motor preparation
before and during the preceding saccade (Jainta et al 2011).
The pupil dilations of target and distractor trials begin to
diverge within the first second after fixation and remain
separated long after the object has disappeared from view.
A cumulative histogram of dwell times is shown in figure 3(c).
Subjects tended to have higher dwell times for targets than for
distractors, but the distributions overlap considerably.

3.2. hBCI classifier performance

The average forward models and weights learned by the hybrid
classifier are shown in figure 4. EEG forward models and
temporal weights correspond roughly to the P300 (Brouwer
et al 2013, Healy and Smeaton 2011, Pohlmeyer et al 2011).
Earlier components sometimes implicated in target detection
BCIs do not appear to be influential in this classifier, perhaps
due to our post-saccadic baseline. Pupil dilation is weighted
highly after 1000 ms, peaking between 1500 and 2000 ms
post-fixation. Dwell time is weighted more highly than any
individual EEG or pupil dilation bin (but less than the sum of
those bins).

The hBCI classifier’s AUC for each subject are shown
in figure 5 alongside those of the single-modality classifiers.
Sorting subjects in descending order of EEG AUC score
highlights an important quality of the hybrid classifier: when
EEG classification is better than the other two modalities,
hybrid classifier performance closely tracks EEG classifier
performance. When another modality is superior, it tends
to track that modality’s performance instead. Many subjects
produce strong classifiers in one area and weak classifiers in
another, and the hybrid classifier’s ability to rely on the best
modality appears to be its greatest advantage. But in cases
where more than one modality provides good information
(e.g., subjects 1, 4 and 9), the hybrid classifier also tends
to receive an extra boost above the best classifier. A similar
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Figure 3. Average features for target (red) and distractor (blue) trials, over time (where time t = 0 is the start of the subject’s first fixation on
the object). Translucent patches represent standard error across subjects (N = 10). (a) Grand average fixation-related potentials at midline
electrodes. Note that pre-fixation values differ from zero because a post-saccade baseline was used. (b) Mean subject-median pupil dilation
(as a percentage of each subject’s mean pupil area). (c) Inverse cumulative histogram of dwell times. This can be interpreted as the chance
that a subject’s gaze remains on the object at the given time.
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Figure 4. Forward models and weights produced by the hybrid classifier. Top: the forward models calculated using the within-bin weights
from each EEG bin appear above the time of the center of that bin (all times are relative to the onset of the subject’s first fixation on the
object). The mean across all 10 × 10 nested cross-validation folds and 10 subjects is shown. Bottom: the cross-bin weights for each
modality and bin as learned by the hybrid classifier (mean across folds, mean ± standard error across subjects, N = 10). The dwell time
weight’s horizontal position and error bars represent the mean ± standard error of the subjects’ mean dwell times.
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Figure 5. Performance of hybrid and single-modality classifiers.
The area under the ROC curve (AUC) is used as a threshold-free
figure of merit. Subjects are sorted in descending order of their EEG
classifier’s AUC score. For all ten subjects, the hybrid classifier
performs better than any one of the single-modality classifiers.

plot of hybrid classifier performance relative to dual-modality
classifiers (EEG + pupil dilation, EEG + dwell time, and pupil
dilation + dwell time) is shown in supplementary figure S3. To
test against the null hypothesis that single- or dual-modality
classifiers produce AUC values greater than or equal to those
from the multimodal classifier, while pairing the results for
each subject but not assuming parametric distributions, we
used a one-sided Wilcoxon signed-rank test for significance
testing. This test shows that the AUC values are significantly
higher for the hybrid classifier than for any of the single-
modality classifiers (p < 0.001) or any of the dual-modality
classifiers (p < 0.05).

3.3. CV classifier performance

The CV system has two goals: to increase the precision of the
predicted target set and to increase the size of the predicted
target set beyond what the subject could see in her limited
exploration. In figure 6(a), we see that the first goal is clearly
accomplished. The median precision of the hBCI predicted
target set is 51%, while that of the CV predicted target set is
97%, a significant increase (one-sided Wilcoxon signed-rank
test, p < 0.005). In figure 6(b), we see that the second goal
is also accomplished, as the median percentage of true targets
identified increases from 9.5% to 84% (a significant increase,
p < 0.005). The hBCI predicted target set is very small
because the subject only views a fraction of the environment,
but the CV system has information about all objects in the
environment. The CV predicted target set is both much larger
and (usually) higher precision than the hBCI predicted target
set, and so it stands to reason that it will identify many more
of the true targets in the environment.

The CV system decreased the precision of the predicted
target set for one subject (S8). This subject was instructed to
look for laptops, and this category was not captured by the
TAG system quite as well as the others were (see simulations
in Pohlmeyer et al (2011)). S1 was the only other subject

instructed to search for laptops. For S1, hBCI classification
was good enough that the system still performed very well,
but for S8, the CV system latched onto other image categories,
pushing the precision of the CV predicted target set below
chance.

3.4. Overall system performance

To accomplish its overall goal of an efficient target search,
the system must provide a short route to visit the predicted
targets. We see in figure 6(c) that by following the route
produced by the system instead of visiting all objects in the
environment naively, the median subject will travel 40% of the
distance to reach 84% of the targets, more than twice as many
targets per unit distance traveled. This represents a significant
improvement in search efficiency (one-sided Wilcoxon signed-
rank test on targets seen per unit distance traveled, p < 0.005).
A sample of the hBCI, CV and TSP outputs for a single
subject, plotted in environment space, are shown in figure 7.
A comparison of overall system performance using single-
modality hBCI classifiers and the full hybrid classifier is shown
in supplementary figure S4.

4. Discussion

4.1. Advantages of hybrid classification

The addition of an eye tracker to a BCI system may induce
material and calibration costs, but the results of this study
indicate significant benefits as well. We used the output of the
eye tracker to remove EOG artifacts without a separate training
paradigm, time-lock epochs reliably, and, most importantly,
enhance classification. Our results demonstrate that eye
position, pupil size and EEG can each provide independent
information to allow a hybrid classifier to produce more
accurate output. Whether this is because they originate from
distinct neural processes—or because they are co-varying
measures of the same internal arousal signal combined with
independent sources of noise—is a matter of some debate
(Linden 2005, Murphy et al 2011). For the purposes of a user-
centric system for able-bodied people, we only assert that if
all three signals can be measured, it is advantageous to include
them in the classifier.

The successful use of graph-based CV in the system
speaks to an important consideration in BCIs for healthy users:
most BCIs, including our hybrid classifier, generate a quantity
of false positives that healthy users are unlikely to tolerate
(Zander et al 2010). The label self-tuning step represents a
way to reduce the cost of these false positives by removing
them before they influence the output provided to the user. In
future iterations of the system, the CV graph could delay its
final extrapolation step until it can verify the consistency of
the hBCI predicted target set, as in Pohlmeyer et al (2011).

4.2. Modularity of system

The system demonstrated in this paper is just one manifestation
of the modular framework described in figure 1. Additional
features could be incorporated, such as heart rate or galvanic
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Figure 6. System performance metrics for all subjects (‘S1’ = subject 1, subject numbers match those in figure 5). (a) The precision of the
hBCI predicted target set is already above chance (black dotted line), but that of the CV predicted target set is greatly increased for every
subject except S8 (see text for possible explanation). (b) The subject viewed a small fraction of the environment during the exploration
phase, so the hBCI classifier only identified a small percentage of all the targets in the environment. The CV graph included many objects
that the subject had not seen, and so the CV predicted target set included a much higher percentage of the true targets. Note that S1 and S8
were asked to look for laptops, which were not as well captured by the CV graph as the other categories were. (c) The distance traveled (as a
percentage of that needed to see all the objects) is plotted against the number of targets seen (as a percentage of all the targets in the
environment). By following the system’s route, all subjects except S8 would view significantly more targets per unit distance traveled (slope
of line from origin to dot) than if they had explored the environment naively (black dotted line), and much closer to if they had explored with
perfect efficiency (traveling salesman route between true targets, black dashed line). These system performance metrics compare favorably
with those using single-modality hBCI classifiers, as seen in supplementary figure S4.

skin conductance. If outliers are anticipated, Fisher LDA could
be replaced with a more robust regression method. If complex
relationships between the features are uncovered, any number
of classifier combination rules could be used for cross-bin
classification (Duin 2002, Kittler et al 1998). The CV feature
set used here is one of many ways to enforce consistency in the
hBCI predicted target set: facial recognition software, object
metadata, audio and video, and direct user input could also be
used as features in the graph-based model of the environment.
The TSP solver could be replaced with a suggestion of a single
‘best match’ based on a combination of classifier certainty and
physical proximity. These choices should change based on the
state of current knowledge about the relevant signals and the
specific needs of the user.

4.3. Relation to recent studies

Our intention to develop an hBCI system for able-
bodied people drove our choice of applications to address.
Pfurtscheller et al (2010) proposed a similar hBCI whose
classification of explicit motor imagery could be augmented

with associated heart rate changes (although to our knowledge,
the device has not been implemented). As in our study,
multiple signals were generated by a single action in a virtual
environment, but unlike our study, the goal was navigation for
a tetraplegic user, and the elevated heart rate highlights the
difficulty of producing the control signals. We chose to help
healthy users search their environment because it achieves a
common goal using signals easy for the user to produce.

Our focus on motion and exploration also drove our
study’s association of graph nodes with locations. Unlike
earlier studies combining BCI and CV to speed image search
(Pohlmeyer et al 2011, Wang et al 2009b), nodes in our CV
graph correspond with points in the physical (or virtual) space
that the user is exploring. The use of environmental awareness
to narrow the continuum of navigational destinations to this
discrete set of waypoints is akin to the assistive robot controller
described by Perrin et al (2010). But by selecting from a large
set of waypoints concurrently rather than making a binary
selection at each intersection, we are able to address the needs
of an able-bodied user who navigates with ease but lacks our
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Distractor
Target
hBCI predicted tartget
CV predicted target
Explored areas
Traveling salesman route

Figure 7. Sample system outputs. These birds-eye views of about
1/4 of subject 7’s environment superimpose the predictions and
outputs of the system onto the locations of the objects (represented
by red/blue dots). Top: hBCI classification. After the subject
explored the areas shaded in gray, the hBCI classifier was able to
label some of those objects as hBCI predicted targets (magenta
circles). Middle: CV extrapolation. The TAG system tunes the hBCI
predicted target set and extrapolates it through the graph to give
each object a CV score (red/blue dot size ∝ CV score). The objects
with the highest CV scores are labeled as CV predicted targets
(green squares). Note that this includes objects in unexplored areas
as well as explored areas. Bottom: route planning. Finally, the TSP
solver generates an efficient route that the user can traverse to visit
all the CV predicted targets in the environment (black dashed line).
Note that these views are zoomed in for visual clarity, and the
traveling salesman route for the whole environment is continuous. A
movie of the final route traversal for another subject is shown in
supplementary movie 2 (available at
stacks.iop.org/JNE/11/046003/mmedia).

CV system’s ability to efficiently choose targets from a large
database.

The desire to build a classifier using multiple naturally
evoked signals locked to one user-initiated event led to this
study’s novel stimulus presentation paradigm. In contrast to
other studies of FRPs in visual search (Brouwer et al 2013,
Healy and Smeaton 2011, Kamienkowski et al 2012), we
used natural images as stimuli, placed them in a dynamically
explored 3D environment, allowed multiple fixations on each
object, and did not eliminate peripheral vision. Unlike other
target response studies in virtual reality (Bayliss and Ballard
2000), our target response signals were locked to user-
generated fixations rather than experimenter-defined stimulus

onsets, and the user did not need to respond physically. These
choices facilitated a natural exploration of an environment
that might elicit signals similar to those we could expect in the
real world. This allowed us to use dwell time as a naturally
evoked control signal and not an explicit one, unlike most
gaze-controlled interfaces (Lee et al 2010) but similar to some
used in reading (Rotting et al 2009).

The use of naturally evoked signals means that our system
could be referred to as an ‘opportunistic’ BCI (Lance et al
2012), since it could provide a benefit without requiring
additional effort from the user. Our system also takes a step
towards the integration of such BCIs with pervasive computing
technologies: since navigation is a key goal of the system, real-
world implementations could interface with mobile devices
like GPS trackers and head-mounted displays.

4.4. Outlook for future advances

As low-cost, mobile EEG hardware continues to advance (Lin
et al 2009, Liao et al 2012) and artifact rejection becomes
more and more sophisticated (Gwin et al 2010, Lau et al 2012,
Lawhern et al 2012), mobile BCIs for the able-bodied user
are becoming technically feasible. We believe that our system
presents an effective way to address many of the barriers
to BCI for healthy users, including training time, attentional
costs, accuracy, reliability and usability (Allison 2010). These
barriers have come into focus during recent discussions of
‘passive’ BCIs (Cutrell and Tan 2008, Rotting et al 2009,
Zander et al 2010), which encourage the use of naturally
evoked signals as part of a more user-centric design process.
Our system combines the conscious control ability of a reactive
BCI with the complementarity, composability and cost-control
of a passive BCI (see Zander et al (2010) for a discussion of
these terms).

Still, obstacles remain. In real-world scenarios, the
environment is much more stimulus-rich, and subjects would
sometimes explore multiple objects within the time span of
the classifier presented here. The stimuli in this task were
viewed far enough apart in time that target responses would
not be expected to overlap. Other studies have excluded short
fixations to eliminate such overlap (Brouwer et al 2013,
Kamienkowski et al 2012). Although Dandekar et al (2012b)
showed that target responses are present in overlapping FRP
signals if they can be teased apart, extracting these signals
from individual FRPs when the target/distractor classes are
unknown remains a challenge for future research. At the
system level, the use of a virtual environment allowed us to
bypass steps that could require significant development in a
real-world application, including building a database of object
features and locations; fusing object location, subject location,
head and eye tracking; and the identification of CV features
that are reliable across a wide array of objects and outdoor
scenes.

5. Conclusion

In this study, we demonstrated a complete system that helps
users efficiently search for objects of interest in a large 3D
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environment, while requiring very little conscious effort from
the user. To do this, we incorporated a neural signal and two
ocular signals that are all produced by the same act of fixating
on an object of interest. We demonstrated that each of these
signals contributes to improved classification across subjects.
To increase the precision and scope of the predicted target
set, we employed a graph-based computer vision model of
the environment to reject false positives and extrapolate hBCI
results. We then plotted an efficient search route in the 3D
environment, providing an output useful to our anticipated user
base of able-bodied individuals. We have applied lessons from
machine learning, passive BCI, computer vision, ergonomics
and reading research to address this multidisciplinary problem,
and we believe that multidisciplinary efforts will continue to
bring an effective real-world mobile BCI application closer to
reality.
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